If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x+170=180
We move all terms to the left:
x^2+3x+170-(180)=0
We add all the numbers together, and all the variables
x^2+3x-10=0
a = 1; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·1·(-10)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*1}=\frac{4}{2} =2 $
| 10+2x+2x=-30 | | -4(-x+1-3x-5=1 | | 5−(x+7)+4x=7(x−1)x | | 4(k-4)-3(k+2)-14=-27 | | Q+(2q-3)=180 | | -6x+4-7x=-113 | | (3x+18)=(5x-4) | | 2(m-17)+9=7(m+8)+9 | | -6-x-2x=-39 | | 5x+9-3x=33 | | 3x-3+28=4x-2+8x | | 15u=9u+24 | | 3x+3+10-9=90 | | 9x+8=2x+3 | | -7x+2+4x=-13 | | 12t+16=13t+24 | | 5(x+1)–3(2x+3)=3(x+2) | | 3-5x+4x=2 | | -x/3=-21 | | -85=3x+7x-5 | | 2x=36+64 | | v/4-11=30 | | 7=4+p/3 | | 4u+12=24 | | 9x-3=41;6 | | X+3+2+3x=17 | | 2x/3-4x-7=-37 | | 5-6n=5n+5 | | 51-12x=-189 | | g=4+1/4 | | 33.71=7g+3.96 | | -1.2+x=-4. |